Dissertation Abstract

The physical and biological controls on the distribution of gases and solutes in sea ice from ice growth to ice decay

Zhou, Jiayun  2014  

F.R.S.- FNRS, F.R.S.- FNRS (Belgium), 176 pp.

 
The ongoing changes in the extent and the properties of sea ice, associated with the warming climate, are affecting the polar ecosystem and the interactions between the atmosphere, sea ice and the underlying waters. How sea ice biogeochemistry will change in the foreseeable future is currently uncertain, but is a crucial problem to tackle.
To better understand how sea ice biogeochemistry could change, we investigated the factors regulating the distribution of some dissolved compounds (e.g., nutrients, dissolved organic matter (DOM)) and gaseous compounds (e.g., Ar, O2, N2, CH4) in sea ice, from ice growth to ice decay. The results were obtained from a 19-day indoor experiment in Hamburg (Germany) and a five-month-long field survey in Barrow (Alaska). They were then compared to the physical properties of the ice (temperature, salinity, and other derived parameters such as brine volume fraction) and different biological parameters (bacterial activity, bacterial abundance, chlorophyll-a and phaeopigments).
Our work indicates that the physical properties of sea ice exert a strong influence on the distribution of the biogeochemical compounds in the ice, through their impact on brine dynamics, gas bubble formation and ice permeability. We have described 4 stages of brine dynamics, which affect the distribution of the dissolved compounds (e.g., silicate and DOM) in sea ice. However, inert gas (Ar) shows a different dynamic in comparison to the dissolved compounds, indicating a different transport pathway. We suggest that the formation of gas bubbles in sea ice is responsible for that different transport pathway, because gas bubbles should move upward owing to their buoyancy in comparison to brine, while dissolved compounds are drained downward due to gravity. Our observations further indicate that the critical permeability threshold for the upward gas bubble transport should range between 7.5 and 10 % of brine volume fraction, which is higher than the 5 % suggested for the downward brine transport. Increasing ice permeability and prolonged gas exchange tend to draw gas concentrations toward their solubility values, except when the under-ice water is supersaturated relative to the atmosphere (e.g., CH4) or when in-situ production occurs in sea ice (e.g., O2).
Because ammonium and O2 obviously accumulate in the ice layers where convection is limited, we suggest that the changes of these biogeochemical compounds in sea ice depend on the competing effect between the physical transport and the biological activity; the biological impact on these biogeochemical compounds in sea ice is obvious when the biological production rate exceeds largely the physical transport rate. We further discussed on the potential of using Ar and N2 as inert tracers to correct the physical controls on O2 and to determine the net community production in sea ice.
In addition to the physical and biological controls, the chemical properties of some biogeochemical compounds (e.g., nitrate, ammonium, DOM) may further influence their distribution in sea ice; further investigations are however needed to confirm this.
Finally, based on our findings, we present an update of the processes regulating the distribution of gases in sea ice, with references to recent observations supporting each of the process. We also provide some insights on how sea ice biogeochemistry could change in the future and the research priorities for an accurate quantification of these changes.